How a Scuba Diving Regulator's First Stage Works By Floyd Devine June 12, 2017
Scott Hagen Dec 17, 2019
Like the diver’s beating heart that moves air from the lungs to the rest of the body, the scuba regulator’s first stage provides the critical connection between divers and the air in our cylinder, allowing us to work and play underwater. The regulator first stage’s main function is to reduce the high tank pressure to an intermediate pressure that can be utilized by the second stage and provide air on demand to the diver. Modern regulator first stages are precision-made and designed to work under demanding conditions wherever divers care to explore. We’ll be examining both piston and diaphragm first stages, and their differences and similarities to help you understand how this vital piece of equipment allows us to breath while enjoying the ocean’s depths.
1. The Parts
Both piston and diaphragm regulators have either a DIN or yoke style fitting to connect them to the scuba cylinder; an inlet filter to prevent contaminants from entering the regulator; a regulator body incorporating intermediate- and high-pressure chambers; a bias spring; medium-pressure fittings for second stages, inflator assemblies, and accessories; and high-pressure fittings for gauges and transmitters. Piston regulators have a piston-style valve assembly with a high-pressure seat separating the first stage’s high- and intermediate-pressure chambers, while diaphragm regulators have a diaphragm, lifter-poppet valve assembly and high-pressure seat performing the same function.
The first stage is designed to provide air at ambient pressure, so it must adjust for the changes in pressure as depth changes. To do this, a method is needed for the valve assembly to “sense” the ambient pressure changes and adjust accordingly. Piston regulators have the bias spring, the underside of the piston and a portion of the piston shaft exposed to the water to provide the hydrostatic pressure necessary for operation. Diaphragm regulators have one side of the diaphragm and the bias spring in contact with water to provide hydrostatic pressure but the rest of the components are sealed off from the environment on the other side of the diaphragm. In both cases, the amount of pressure required to open and close the valve assemblies varies with the ambient water pressure on the exposed surfaces.
2. How It Works
As you inhale on the regulator’s second stage, pressure in the first stage’s intermediate chamber is reduced. The force of the bias spring and the ambient water (hydrostatic) pressure push inward on either the diaphragm or the base of the piston head, raising the valve and creating an opening between the intermediate- and high-pressure chambers. Air flows from the high-pressure chamber into the intermediate-pressure chamber and down to the regulator second stage via the connecting hose. When the diver stops inhaling, pressure inside the intermediate chamber increases until it is greater than that of the bias spring and hydrostatic pressure and the valve closes.3. Balanced vs. Unbalanced
A balanced first stage, whether piston or diaphragm, is designed so that tank pressure does not impact the operation of the valve. This ensures consistent breathing effort independent of depth or tank pressure. Currently, all diaphragm regulators in production are balanced. In diaphragm systems, balancing is accomplished by routing intermediate-pressure air to both sides of the complete valve assembly and passing the valve stem through both the high-pressure and intermediate-pressure chambers. In balanced piston first stages, the incoming high-pressure air does not directly act on the piston-valve, which also passes through the intermediate and high-pressure chambers. Unbalanced regulators have tank pressure acting directly on the high-pressure seat, and incoming high-pressure air will act to close the valve as intermediate pressure rises. This works fine while tank pressures are high, but can result in heavier breathing resistance when at higher ambient air pressure (deeper water) or when tank pressure is low. The unbalanced piston will still provide adequate air supply in these cases, but it will require more effort by the diver to breath.
Diaphragm First Stage
Floyd Devine